Strong Convergence of Non-Implicit Iteration Process with Errors in Banach Spaces

نویسندگان

  • Yan Hao
  • Xiaoshuang Wang
  • Aihua Tong
  • Xiaolong Qin
چکیده

and Applied Analysis 3 Lemma 1.1 see 21 . let X be a uniformly convex Banach space. Let b and c be two constants with 0 < b < c < 1. Suppose that {tn} is a sequence in b, c . Let {xn} and {yn} be two sequences in X such that lim sup n→∞ ‖xn‖ ≤ d, lim sup n→∞ ∥ yn ∥ ∥ ≤ d, lim n→∞ ∥ tnxn 1 − tn yn ∥ ∥ d 1.8 hold for some d ≥ 0, then limn→∞‖xn − yn‖ 0. Lemma 1.2 see 26 . Let {an}, {bn}, and {cn} be three nonnegative sequences satisfying the following condition: an 1 ≤ 1 bn an cn, ∀n ≥ n0, 1.9 where n0 is some nonnegative integer, ∑∞ n 1 bn < ∞ and ∑∞ n 1 cn < ∞. Then the limit limn→∞an exists. 2. Main Results Lemma 2.1. Let X be a real Banach space and K a nonempty closed and convex subset of X. Let T : K → K be a asymptotically I-nonexpansive in the intermediate sense and I : K → K a asymptotically nonexpansive in the intermediate sense. Assume that F : F T ∩ F I / ∅. Let σn max{0, supx,y∈k ‖Tnx−Tny‖−‖Inx−Iny‖ } and σn max{0, supx,y∈k ‖Tnx−Tny‖−‖x−y‖ }. Let {αn}, {βn}, {γn}, {α̂n}, {β̂n}, {γ̂n} be six real number sequences in 0, 1 . Let {xn} be a sequence generated in the following iterative process: x1 ∈ C, yn α̂nxn β̂nIxn γ̂nvn, xn 1 αnxn βnTyn γnun, n ≥ 1, 2.1 where {un} and {vn} be two bounded sequences in K. Assume that the following restrictions are satisfied: a αn βn γn α̂n β̂n γ̂n 1; b ∑∞ n 1 σn < ∞, ∑∞ n 1 σn < ∞; c ∑∞ n 1 γn < ∞, ∑∞ n 1 γ̂n < ∞. Then limn→∞‖xn − p‖ exists for all p ∈ F. 4 Abstract and Applied Analysis Proof. Letting p ∈ F, we see that ∥ yn − p ∥ ∥ ∥ ∥ ∥ ( 1 − β̂n − γ̂n ) xn β̂nIxn γ̂nvn − p ∥ ∥ ∥ ≤ ( 1 − β̂n − γ̂n )∥ xn − p ∥ ∥ β̂n ∥ ∥Ixn − p ∥ ∥ γ̂n ∥ vn − p ∥ ∥ ≤ ( 1 − β̂n − γ̂n )∥ xn − p ∥ ∥ β̂n (∥ xn − p ∥ ∥ σn ) γ̂n ∥ vn − p ∥ ∥ ( 1 − γ̂n )∥ xn − p ∥ ∥ γ̂n ∥ vn − p ∥ ∥ β̂nσn ≤ ∥∥xn − p ∥ ∥ γ̂n ∥ vn − p ∥ ∥ β̂nσn, 2.2 ∥ xn 1 − p ∥ ∥ ∥ ∥ ( 1 − βn − γn ) xn βnTyn γnun − p ∥ ∥ ≤ (1 − βn − γn )∥ xn − p ∥ ∥ βn ∥ ∥Tyn − p ∥ ∥ γn ∥ un − p ∥ ∥ ( 1 − βn − γn )∥ xn − p ∥ ∥ βn ∥ ∥Tyn − Tp ∥ ∥ γn ∥ un − p ∥ ∥ ≤ (1 − βn − γn )∥ xn − p ∥ ∥ βn (∥ ∥Iyn − Ip ∥ ∥ σn ) γn ∥ un − p ∥ ∥ ( 1 − βn − γn )∥ xn − p ∥ ∥ βn ∥ ∥Iyn − Ip ∥ ∥ βnσn γn ∥ un − p ∥ ∥ ≤ (1 − βn − γn )∥ xn − p ∥ ∥ βn (∥ yn − p ∥ ∥ σn ) βnσn γn ∥ un − p ∥ ∥ ( 1 − βn − γn )∥ xn − p ∥ ∥ βn ∥ yn − p ∥ ∥ γn ∥ un − p ∥ ∥ βn σn σn ≤ (1 − βn )∥ xn − p ∥ ∥ βn ∥ yn − p ∥ ∥ γn ∥ un − p ∥ ∥ βn σn σn . 2.3 Substituting 2.2 into 2.3 ,we obtain that ∥ xn 1 − p ∥ ∥ ≤ (1 − βn )∥ xn − p ∥ ∥ βn (∥ xn − p ∥ ∥ γ̂n ∥ vn − p ∥ ∥ β̂nσn ) γn ∥ un − p ∥ ∥ βn σn σn ∥ xn − p ∥ ∥ [ βnγ̂n ∥ vn − p ∥ ∥ γn ∥ un − p ∥ ∥ βnσn βnσn ( 1 β̂n )] . 2.4 Let an ‖xn − p‖, bn 0, and cn βnγ̂n ∥ vn − p ∥ ∥ γn ∥ un − p ∥ ∥ βnσn βnσn ( 1 β̂n ) . 2.5 It follows from 2.4 that an 1 ≤ an cn. 2.6 In view of the restrictions b and c , we see that ∑∞ n 1 cn < ∞. We can easily conclude the desired conclusion with the aid of Lemma 1.2. This completes the proof of Lemma 2.1. Abstract and Applied Analysis 5 Theorem 2.2. Let X be a real Banach space and K a nonempty closed and convex subset of X. Let T : K → K be a asymptotically I-nonexpansive in the intermediate sense and I : K → K a asymptotically nonexpansive in the intermediate sense. Assume that F : F T ∩ F I / ∅. Let σn max{0, supx,y∈k ‖Tnx−Tny‖−‖Inx−Iny‖ } and σn max{0, supx,y∈k ‖Tnx−Tny‖−‖x−y‖ }. Let {αn}, {βn}, {γn}, {α̂n}, {β̂n}, {γ̂n} be six real number sequences in 0, 1 . Let {xn} be a sequence generated in the following iterative process:and Applied Analysis 5 Theorem 2.2. Let X be a real Banach space and K a nonempty closed and convex subset of X. Let T : K → K be a asymptotically I-nonexpansive in the intermediate sense and I : K → K a asymptotically nonexpansive in the intermediate sense. Assume that F : F T ∩ F I / ∅. Let σn max{0, supx,y∈k ‖Tnx−Tny‖−‖Inx−Iny‖ } and σn max{0, supx,y∈k ‖Tnx−Tny‖−‖x−y‖ }. Let {αn}, {βn}, {γn}, {α̂n}, {β̂n}, {γ̂n} be six real number sequences in 0, 1 . Let {xn} be a sequence generated in the following iterative process: x1 ∈ C, yn α̂nxn β̂nIxn γ̂nvn, xn 1 αnxn βnTyn γnun, n ≥ 1, 2.7 where {un} and {vn} be two bounded sequences in K. Assume that the following restrictions are satisfied: a αn βn γn α̂n β̂n γ̂n 1; b ∑∞ n 1 σn < ∞, ∑∞ n 1 σn < ∞; c ∑∞ n 1 γn < ∞, ∑∞ n 1 γ̂n < ∞. If both T and I are continuous, then the sequence {xn} strongly converges to a common fixed point of T and I if and only if lim inf n→∞ d xn, F 0. 2.8 Proof. The necessity is obvious. Next, we prove the sufficiency part of the theorem. Note that continuity of T and I implies that the set F T and F I are closed. It follows from 2.6 that ∥ xn 1 − p ∥ ∥ ≤ ∥∥xn − p ∥ ∥ cn. 2.9 This implies in turn that d xn 1, F ≤ d xn, F cn. 2.10 Now applying Lemma 1.2 to 2.10 , we obtain the existence of the limit limn→∞d xn, F . By condition 2.8 , we have lim n→∞ d xn, F lim inf n→∞ d xn, F 0. 2.11 6 Abstract and Applied Analysis Next we prove that the sequence {xn} is a Cauchy sequence in K. For any positive integers n, m, from 2.9 it follows that ∥ xn m − p ∥ ∥ ≤ ∥∥xn m−1 − p ∥ ∥ cn m−1 ≤ (∥∥xn m−2 − p ∥ ∥ cn m−2 ) cn m−1 ≤ · · · ≤ ∥∥xn − p ∥ ∥ n m−1 ∑

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Convergence theorems of implicit iterates with errors for generalized asymptotically quasi-nonexpansive mappings in Banach spaces

In this paper, we prove that an implicit iterative process with er-rors converges strongly to a common xed point for a nite family of generalizedasymptotically quasi-nonexpansive mappings on unbounded sets in a uniformlyconvex Banach space. Our results unify, improve and generalize the correspond-ing results of Ud-din and Khan [4], Sun [21], Wittman [23], Xu and Ori [26] andmany others.

متن کامل

Convergence theorems of an implicit iteration process for asymptotically pseudocontractive mappings

The purpose of this paper is to study the strong convergence of an implicit iteration process with errors to a common fixed point for a finite family of asymptotically pseudocontractive mappings and nonexpansive mappings in normed linear spaces. The results in this paper improve and extend the corresponding results of Xu and Ori, Zhou and Chang, Sun, Yang and Yu in some aspects.

متن کامل

Implicit iteration approximation for a‎ ‎finite family of asymptotically quasi-pseudocontractive type‎ ‎mappings

In this paper‎, ‎strong convergence theorems of Ishikawa type implicit iteration‎ ‎process with errors for a finite family of asymptotically‎ ‎nonexpansive in the intermediate sense and asymptotically‎ ‎quasi-pseudocontractive type mappings in normed linear spaces are‎ ‎established by using a new analytical method‎, ‎which essentially‎ ‎improve and extend some recent results obtained by Yang‎ ‎...

متن کامل

Strong Convergence of an Implicit Iteration Process for Asymptotically Nonexpansive in the Intermediate Sense Mappings in Banach Spaces

The aim of this article is to study an implicit iteration process with errors for a finite family of non-Lipschitzian asymptotically nonexpansive in the intermediate sense mappings in Banach spaces. Also we have established some strong convergence theorems for said scheme to converge to common fixed point. The results presented in this paper extend and improve the corresponding results of [1], ...

متن کامل

New three-step iteration process and fixed point approximation in Banach spaces

‎In this paper we propose a new iteration process‎, ‎called the $K^{ast }$ iteration process‎, ‎for approximation of fixed‎ ‎points‎. ‎We show that our iteration process is faster than the existing well-known iteration processes using numerical examples‎. ‎Stability of the $K^{ast‎}‎$ iteration process is also discussed‎. ‎Finally we prove some weak and strong convergence theorems for Suzuki ge...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014